现在的位置:主页 > 期刊导读 >

肿瘤学论文_一种提高直肠癌诊断精度的基于U型

来源:医学食疗与健康 【在线投稿】 栏目:期刊导读 时间:2022-01-27

【作者】网站采编

【关键词】

【摘要】文章摘要:作为确定病灶与诊断的重要基础,医学图像分割已成为生物医学领域中极其重要的热门研究领域之一,其中基于全卷积神经网络和U型网络(U-net)等神经网络的医学图像分割算

文章摘要:作为确定病灶与诊断的重要基础,医学图像分割已成为生物医学领域中极其重要的热门研究领域之一,其中基于全卷积神经网络和U型网络(U-net)等神经网络的医学图像分割算法得到越来越多研究人员的重视。目前,医学图像分割算法应用于直肠癌诊断的研究报道较少,且已有的研究对直肠癌的分割结果精度不高。本文提出了一种结合图像裁剪和预处理方法的编码—解码卷积网络模型。该模型在U型网络的基础上,借鉴残差网络思想,用残差块代替传统的卷积块,有效避免了梯度消失的问题。此外,本文还采用了图像增广的方法提高了所提模型的泛化能力,并在“泰迪杯”数据挖掘挑战赛所提供的数据集进行测试。测试结果表明,本文提出的基于残差块的改进U型网络模型结合图像裁剪预处理,可以大大提高直肠癌的分割精度,得到的戴斯系数在验证集上达到0.97。

文章关键词:

论文分类号:R735.37;TP391.41

文章来源:《医学食疗与健康》 网址: http://www.yxslyjkbjb.cn/qikandaodu/2022/0127/1838.html

上一篇:肿瘤学论文_基于胸部CT的影像组学技术在非小细
下一篇:中医学论文_调和营卫法在双心疾病中的应用

医学食疗与健康投稿 | 医学食疗与健康编辑部| 医学食疗与健康版面费 | 医学食疗与健康论文发表 | 医学食疗与健康最新目录
Copyright © 2018 《医学食疗与健康》杂志社 版权所有
投稿电话: 投稿邮箱: